Tag Archives: Information Design

How Louis C.K. Could Help Improve Street Sign Design

The opening of last week’s season premiere of Louie offered up a hilarious scene of Louie and a fellow New Yorker trying to decipher an odd assortment of street signs to see if it was safe to park their cars. This must be a fairly common problem in bigger cities because I came across these weird signage clusters a lot back when I was trying to eek out a living as an urban planner. The picture below was taken in front of my sister’s old house in Evanston, IL (a Chicago suburb) back in the 90s. Despite all of the warnings, it was actually okay to park in this spot at the time we were there.

In any given city I suppose there are a bunch of different parking rules and each one has its own sign associated with it. Every now and then you get a situation where overlapping rules apply and the result is a bit of a jumble. It is a classic — albeit minor — case of the law of unintended consequences. There is simply nothing in a city worker’s toolkit that would allow them to provide an appropriate solution to such a complex problem.

What is needed is a more flexible approach — something that clearly outlines the rules of a given situation but can also be easily adjusted to meet slightly different circumstances.

After returning home, I put together a quick idea that involved more of a calendar-like design, with circumstances in rows and time-of-day in columns. My idea was to have a standard sign to which workers could affix a series of universal “no” stickers at the right points. The design is based primarily on the given situation (and does nothing to address the driveway warning) but I thought it was a good start.

The new sign would save taxpayer money by reducing both the number and variety of signs that needed to be made. It would also simplify the interpretation of complex situations for the average citizen and it could be easily modified by city traffic workers if parking circumstances changed. You could even use it to block off areas temporarily by adding a removable (magnetic?) marker during construction or special events.

The one big drawback that I could see for this design is that it leaves a lot of white space open for minor vandalism. Even I might be tempted to play a few games of tic-tac-toe on such a sign. Overall, though, I think it is a step in the right direction. I hope Louie would be proud.

Have a happy Fourth of July, everyone! Make sure you interpret those parking signs along the parade route carefully.

Revised Parking Sign System

Geographic References in Local Business Names

This little exercise came about after I read an article on the old Northwest Territory in the U.S., which basically consisted of all the land west of Pennsylvania, northwest of the Ohio River, and east of the Mississippi River. As the country expanded westward, this geographic area gradually became known as the “Midwest” (or the East North Central States region) but not before the older name left its mark on the local culture. Organizations like Northwestern Mutual Life (Milwaukee) and Northwestern University (Chicago) still refer back to to the days when these places were located on the fringe of the country, not at its center.

It occurred to me that researching such place names would be a good way to see if there was still a residual “shadow” of the old Northwest territory so I downloaded a sample list of company headquarters with the phrase “Northwest” or “Northwestern” in their names and plotted them on a map. Alas, this attempt failed to find anything significant (there was too much competition with the Pacific Northwest in name usage). However, I did look up some other regional terms with more positive results.

 

The geographic patterns for most of these terms are fairly distinct but there are also some areas of overlap. It was especially interesting to see regions that had local businesses in three or more categories. The old Northwest territory fits this mold with a combination of Midwest, Great Lakes, and Prairie.

Favre-a-Palooza

Now that we can safely say that Brett Favre has retired (notwithstanding rumors to the contrary), I thought it was time to pull out some data on the indecisive quarterback’s career touchdown passes. Stats on passes say a lot about the relationship between a quarterback and his receivers so I wanted to create a visual that captured some of these stories.

The chart below shows each touchdown pass that Brett Favre threw during his NFL career and displays it up by receiver (vertical axis), season (horizontal axis), average yardage per month (size of marker), and team (color of marker).

Packer Fans will immediately recognize the significance of some of the data points. For the rest of you, here are a few highlights:

  • Sterling Sharpe caught Brett Favre’s first touchdown pass as a Green Bay Packer in 1992 and continued to be the quarterback’s primary receiver for the next three years. The 5x All-Pro led the NFL in touchdown receptions in both 1992 and 1994 and would certainly have played a major role in the team’s subsequent success if he hadn’t suffered a career-ending neck injury at the end of the 1994 season.
  • Following Sharpe’s early exit from football, Favre was forced to distribute his passes among a broader range of players, chief among them wide receivers Robert Brooks and Antonio Freeman. These two players would serve as the primary pillars of the passing game throughout Favre’s most successful period with Green Bay.
  • During the 1996 season (the year the Packers won Super Bowl XXXI), Favre threw touchdowns to ten different receivers, a career high. His total touchdown pass yardage that year also reached a high water mark.
  • Following Favre’s two Super Bowl appearances, there was a noticeable dropoff in the number of new players catching touchdowns. It is not clear whether it was because the receiving core had stabilized or the coaches were focused on developing other aspects of the team but there were no fresh faces in the 1998 season and only two (Corey Bradford and Donald Driver) in 1999.
  • Favre did not have another pair of favorite “big play” receivers until his last two seasons with the Packers, when he had both Driver and Greg Jennings.
  • After Favre’s retirement from the Packers, he was introduced to an entirely new slate of receivers with the New York Jets in 2008. This situation was repeated in 2009 when he signed up with the Minnesota Vikings. He threw his final touchdown pass to Percy Harvin in December 2010.

Unemployment vs. Underemployment

The Bureau of Labor Statistics releases the results of two major surveys on the first Friday of every month (the Current Employment Statistics or CES and the Current Population Statistics or CPS). Although the amount of information in these two surveys is quite extensive, the general public is probably familiar with only a few specific metrics.

First and foremost among these is the unemployment rate, which represents the ratio of unemployed workers to the overall civilian labor force. As with anything involving the government, this simple number is more complex than it than it seems. For one thing, the BLS has no less than six different methods of calculating unemployment … and each one comes in a seasonally adjusted and unadjusted format. The standard unemployment rate — the one that makes all the headlines — is called U-3 and it is usually seasonally adjusted.

Many economists feel that U-3 is misleading because, over they years, it has slowly excluded many of the factors that used to go into how the U.S. reported unemployment. They prefer to use the “underemployment” rate or U-6, which is the BLS’s broadest measure of unemployment.

The basic definitions:

  • U-3 – Total unemployed persons, as a percent of the civilian labor force (the official unemployment rate).
  • U-6 – Includes those people counted by U-3, plus marginally attached workers (not looking, but want and are available for a job and have looked for work sometime in the recent past), as well as persons employed part time for economic reasons (they want and are available for full-time work but have had to settle for a part-time schedule).

Keeping all of these terms straight can be difficult for the average person, so — despite Stephen Few’s objections — I have created a pie chart that attempts to explain all of the various relationships. The central pie shows the  basic division of the working age population into the civilian labor force and people who are outside of the labor force. Each subsequent pie divides these categories into smaller and more specific subcategories. 

The calculations for U-3 and U-6 can then be represented as slices of the pie:


Right off the bat you can see that there is a problem with some of the various categories. For one thing, there is an entire group of people who are listed as Want a Job Now but aren’t working and aren’t counted as unemployed. This category includes people who have been out of work for over a year and have officially fallen out of the civilian labor force. Although the U-6 figure includes a portion of this group, many critics still feel that this practice understates unemployment.

Another way to show the calculation of the two metrics is graphically, using the color coding of the legend from the chart to show the details for each metric:

This excercise highlights another potential issue for measurement of the economy by showing the importance of the denominator (in this case, the Civilian Labor Force). Variations in this number have a tremendous effect on the outcome of both calculations. By reclassifying certain groups of unemployed (the Want a Job Now crowd), people are siphoned off from both the numerator and the denominator. The end result is a slight reduction of both the U-3 and U-6 rates. Not a big deal … unless you happen to be running for office.

Six Degrees of Joy Division

My local record store used to have this great poster on the back wall that explained how several dozen British indie bands from the 80s were all linked together through their various group members. The title of the poster was something like “Why All These Bands Sound the Same” and it was clearly a tongue-and-cheek slam of the gloomy post-punk sound of musical groups like Bauhaus and the Smiths.

I loved the design concept and looked for the poster when the store finally went out of business a few years ago. Although I never found it, it occurred to me recently that I might be able to reconstruct the graphic using some modern tools and data from the online music site AllMusic.com.

AllMusic is an outstanding musical resource and their meticulous site formatting allowed me to write a program that would crawl from page to page gathering information about interrelated bands and band members as it went. I decided to use the group Joy Division as a starting point because I liked the movie Control and had a vague memory of that particular band name appearing on the poster. The program ran over night … evaluating 37,538 separate pages before it completed its run.

Using the IBM visualization tool, Many Eyes, I created a network diagram of the bands that are within six steps of my “seed” group. The full interactive results are at the end of the post (worth the effort if the Many Eyes site is working) but here is a detail:

>

The Joy Division Network

At nearly 38K records, this particular musical network covers a huge swath of Anglo-American rock-and-roll and includes almost all of the major groups in the Pop/Rock genre. What’s perhaps most interesting about this massive network is the fact that Joy Division is only linked to two bands directly, the acclaimed New Order (formed in 1980 after the death of JD vocalist Ian Curtis) and the Manchester supergroup Freebass (formed in 2004). All other connections are indirect, with a total of 20 degrees of separation between Joy Division and the most distant band in the network, post-grunge Los Angeles outfit Open Hand (formed in 2000).

>

Other Thoughts on the Data

The first odd thing I noticed about the network was that, by focusing on the relationships between bands, the network excludes a lot of well-known solo artists. Even when these musicians joined a band, their independent careers limited these associations to one or two instances. The best example of this situation would be someone like Elvis Presley or Johnny Cash. Both of these artists were loosely linked together through a glorified hootenanny called The Million Dollar Quartet (along with Carl Perkins and Jerry Lee Lewis). The only other bands in this network are The Offenders and the Cash-related groups The Highwaymen and Johnny Cash & the Tennessee Two. Some of the other solo artists in this minor network are household names (depending on the household, of course), including Waylon Jennings, Kris Kristofferson, and Willie Nelson. Three bands, a half-dozen stars and a lot of hits … but no direct connection to the huge Joy Division network. Many current rap artists seem to fit this mold as well.

On the flip side, progressive rock groups like King Crimson had members who were in dozens of other bands. These social connectors can be seen at the center of a huge spider web of interrelated groups in the network diagram. Bands like these are often experimental in nature, with talented musicians putting their stamp on a number of different side projects. Some very influential artists can be spotted in the midst of these groups, including — using King Crimson as an example — famous journeyman players like Robert Fripp, Adrian Belew, John Wetton and Greg Lake.

Finally, although I distinctly remember the band Bauhaus and its associated constellation of bands (Love & Rockets, Tones on Tail, The Jazz Butcher, etc.) on the poster, they were not within six degrees of separation of Joy Division in the network data (they were about eight links away). This exposes an issue with my data gathering methodology because it doesn’t take into account other relationships between artists such as mentors, guest musicians, common producers or other ties. Still, it was an interesting exercise with fruitful results.

Additional Interactive Charts

Bubble diagram of musical styles (full band network):
Network diagram (six degrees of Joy Division):

Time-Distance Diagrams

After I was in a car accident a few years ago, I contacted the city Traffic Control Engineer to see if I could get a copy of the signal timing sequence for the intersection of the street where the accident occurred. The information they provided allowed me to construct a time-distance diagram to relate the path the car traveled to the 90-second traffic signal cyles for several streets. 

The time in seconds can be read down the side of the diagram and the distance can be read across the bottom. Stationary objects (like the traffic lights) show up vertically on the chart while moving objects cross the chart at different slopes depending on their speed. The blue line represents the path taken by a car which starts from a complete stop at one intersection and accelerates to a speed of 35 miles-per-hour in a very leisurely 9 or 10 seconds. Note that the line crosses the final intersection during a green light.

What I liked about this diagram was how easy it was to show a series of timed lights and the effects that different average speeds had on the outcome. I was reading Edward Tufte’s The Visual Display of Quantitative Information at the time and his section on train schedules was very inspirational. Despite my efforts, however, the other driver sued for injury and my insurance company settled out of court. Oh well, at least I was able to get this great chart out of the process.

Fighting Insidious Business Jargon with Design

One of the biggest barriers to introducing new concepts to people is that they often have old, preconceived notions about those concepts that are just close enough to the truth to cause confusion. For example, my company recently started a sales program that establishes performance incentives by “vertical” — one of those vague business terms that could mean just about anything to anybody. Tracking such an ambiguous concept can cause a lot of angst when someone’s paycheck is on the line so it fell to me to come up with some ideas to help clarify the definition.

The first problem I needed to address was the fact that most people already thought they knew what vertical meant. When you try and find a definition online, you’ll usually come across terms like “vertical industry” or “vertical market” which both refer to groups of companies that serve specific, related  industries (i.e. a niche market). In contrast, a “horizontal market” refers to companies that meet more general business needs.

The differences between these two definitions are pretty subtle and, as a result, most people tend to associate the term vertical with almost any industry, departmental function or even groups of occupations. In our business, we need to keep such categories distinct so I decided to create a matrix that placed our two main areas of focus — jobs and industries — on two separate axes. This would provide a simple visual cue to the differences during future discussions and presentations. The basic distinctions are:

  1. Industry (based on the NAICS standard) applies to a company or client.
  2. Occupation (based on the SOC standard) applies to a person or individual.

Unfortunately, a standard table would still present the information in columns and rows — leaving the vague association with “vertical” unresolved. To address this, I decided to take a cue from a common Scandinavian holiday decoration and rotate the table 45 degrees. This eliminates all vertical and horizontal lines in the diagram and forces the observer to abandon the concept altogether. In the diagrams, the industry information appears in the orange axis, while the occupation appears in the blue axis.

 

Once this basic structure is established, unique industry/occupation combinations can be “mapped” to demonstrate situations that are familiar to the audience. These examples help reinforce the concepts while emphasizing the difference between the two categories. It can be particularly helpful explaining examples where industries and occupations share some elements in their names (i.e. health services vs. healthcare practitioners).