Category Archives: Infographics

What Does the Average Biker Dude Look Like?

CNN recently published the mugshots of all of the biker gang members who were arrested after the recent shootout in a Waco, TX restaurant. There were a total of 171 pictures, all in the same standard pose and most in the same standard orange jumpsuit:

Mugshot_Matrix

Seeing all of these pictures got me wondering if it was possible to create an image that represented the typical gang member. I had seen a technique called “pixel averaging” applied to a series of wedding photos many years ago and I was able to find a tool called ImageJ that helped me with the processing.

It was a fairly straightforward effort … just upload the individual photos into an image stack and then apply a z-filter to each pixel of each “slice” or picture in the stack. The result is as follows:

Mugshot_Pixel_Avg

Despite a wide variety of ages, facial hair, and ethnic backgrounds in the mugshots, the combined image looks like some guy you might see at a weekend softball game. It certainly gives no indication of how dangerous some of these men (and women) can be.

Updates:

  • A Force Node Diagram of the U.S. Interstate System

    There’s nothing too complicated about this post. I’ve been interested in creating an illustration of the U.S. Interstate system for awhile but my initial concept of a “subway-style” diagram of the network had already been done. After some recent experimentation with the D3 Javascript library, I decided that it might be interesting to try out a simple force node display using the Interstate’s control cities as the nodes. Control cities are certain major destinations that are used to provide navigational guidance at key decision points along a particular route. It should be noted that not all control cities are actually cities and not all cities qualify as control cities. My starting list can be found here.

    After my initial data collection, I found I had that I had to modify my approach to improve the network. First of all, I had to add some nodes for certain highway-to-highway connections, especially those that occurred in remote areas. I also had to include some cities that had multiple Interstate highways passing through because they weren’t always listed on each route. Finally, I added a few non-Interstate roads where I thought it made sense, including Alaska (which doesn’t actually have any Interstate highways) and eastern Canada, which has a major highway called the King’s Highway or Ontario Highway 401 linking Toronto and Montreal to key American cities.

    Here is the result … click on the picture to get to a fully interactive version.

    interstate_force_node_v2

    The size of the nodes is related to the estimated population of the city/destination and the color represents Census division (plus Canada). You can kind of see a rough outline of the U.S., with the Midwest roughly in the center of the diagram (in orange) and the two coasts wrapping around on either side. Hawaii and Alaska float alone at the edge and the Florida penninsula (in the South Atlantic, in red) protrudes out toward the bottom of the chart.

    Infographics and Data Visualization (Week 5/6)

    I took part in a brief discussion on the student forum after the Week 4 project and it made me realize that I’d been spending so much time trying to create a functional interactive graphic in Tableau that I was missing out on practicing some of the basic techniques of the class. When you combine that with the fact that my favorite attempt was a sketch I laid out in PowerPoint, I decided that I should try to focus on the structure and design of the graphic to see what I could come up with.

    The topic I picked was based on some data that I’d pulled back in May/June that I’d never had a chance to use. This data covered all of the various U.S. breweries and the variety of beers they made. I did some additional research to add some information on beer ingredients (especially water, barley and hops) as well as some interesting stats on beer consumption based on a few fun maps done at FloatingSheep.

    I spent a good deal of time coming up with the basic grid of the graphic, which ended up having a static left hand column for the introduction to each topic and then an interactive map of the U.S. on the right. The interactive portion consists of tabbed sections that allow you to navigate through several subtopics.

    The flow of the of the series starts with an overview of beer production in the U.S., moves to a section on the ingredients of beer, and ends with information on American beer consumption. (I also thought about including some local beer stats for the great State of Wisconsin but that may have to wait.)

    Due to time constraints, these mockups contain sample maps from other sources (here. and here):

    Infographics and Data Visualization (Week 4)

    The assignment for Week 4 is the based on data used in a recent Guardian article on U.S. unemployment. Having used Bureau of Labor Statistics (BLS) data for many years at my previous job, I am far more familiar with this topic than I was with the data we used for last week’s assignment. In fact, I have already written several blog posts dealing with general employment statistics so it will be challenging to come up with something fresh.

    The Guardian article includes an interactive map that highlights the lower 48 states (Hawaii and Alaska are off screen) and allows the user to select one of eight different employment metrics. A five-color scale defines the range of each metric while clicking on an individual state brings up a bar chart displaying a few data points and some additional text.

    One problem I have with this map is that I think the states are too large to tell a detailed story about how unemployment affects different areas of the country. Maps at the county level (like this one from the BLS or this gorgeous D3 example posted on GitHub) show far more interesting regional employment patterns and help create a more compelling story. (Alberto Cairo talks about the importance of enumeration unit size in this week’s reading assignment.)

    Another criticism is that the map only uses a fraction of the employment/unemployment information available from the BLS. This data is relatively easy to download and so there’s no real reason not to include a richer dataset in the graphic. Additional data would allow more detailed monthly trends and more meaningful comparisons to the National rate and/or the rates of other states.

    Finally, I think the color scheme used on this map is hard to interpret. The color categories are not easily distinguished from one another and they don’t relate to any natural scale that the user could use to detect patterns. Creating more categories might also help with interpretation of the data.

    The range and structure of the data suggests that there is a good story to be found looking at unemployment before, during and after Obama’s first term. There were certainly some unusual statistics associated with the 2007-2009 recession (as defined by the National Bureau of Economic Research).  It was the worst period of economic performance in the U.S. since the Great Depression and the pace of the recovery is one of the slowest on record.

    In fact, until President Obama was re-elected a few weeks ago, no sitting president since World War II had been returned to office with an unemployment rate above 7.2%. This metric was such a sacred cow that conservative pundits accused the BLS of bias when data more favorable to the President was released in the run-up to the election. So, how did Obama earn a second term fighting these headwinds?

    My first set of charts presents an overview of unemployment in the U.S. over the past twelve years. I wanted to show both the long-term trend in unemployment as well as a side-by-side comparison of the three most recent presidential terms. I’ve included a shaded area for each of the past two recessions on the first chart to show the effect of the two recessions.

    The first thing I noticed by looking at these charts is that, over the past twelve years, the U.S. unemployment rate has never been lower than it was during George W. Bush’s first month in office. The rate got pretty close to that mark in the final months of Bush’s second term but it never quite made it. The second thing I noticed was that the drop in unemployment during the months following the Great Recession was slightly faster than it was during the recovery period following the 2001 recession.

    My second chart shows the unemployment rate for each state over the course of Obama’s first term. It also includes a ranking of states by total unemployment and colors each chart using the results of the 2012 election.

    A Thanksgiving Meal Preparation Timeline

    The art of timing the preparation of Thanksgiving dishes takes years of experience and perhaps more than a few hard lessons in the kitchen (ever have anyone de-bone a turkey?). For those less experienced chefs, I’ve always felt that a good inforgraphic might help organize the work so that all the dishes are ready at the proper time.

    I didn’t have the time to document my own family’s meal this year but I noticed that L.V. Anderson over at Slate wrote a great piece on her attempt to organize a full dinner. She sums up the issues nicely:

    Cooking a Thanksgiving meal is a somewhat masochistic enterprise. It’s rewarding, for sure, and fun if you like cooking. But perfectly coordinating the timing of several dishes—nearly all of which taste best hot, many of which require oven time, and some of which begin deteriorating in quality shortly after you finish cooking them—is, well, impossible.

    I’ve taken her instructions and organized them into a timeline with a target mealtime of 3:00 PM. Each box in the chart represents a 15-minute interval and clicking on it describes the task and provides a link to the recipe. Here it is … posted just under the wire:

    It still needs some work so I’ll be making a few changes over the weekend. Meanwhile, Happy Thanksgiving!

    Infographics and Data Visualization (Week 3)

    The goal of this week’s assignment is to review some global aid data from the Guardian and evaluate how this information should be presented.  This is a two-part assignment and I have been able to download the data and let my thoughts percolate over the past few days. The focus is on the aid transparency index, which uses a broad set of criteria to rank major aid donors on their openness.

    I’ll have to admit that my first reaction after looking at the data a bit was a muted “so what?” A simple rank of the aid organizations shows some of the usual good samaritans at the top and an apparent decline in transparency that roughly corresponds to a drop in GDP per capita (or possibly happiness or density of heavy metal bands).

    Part of my lukewarm response stems from the fact that don’t really know what the consequences of transparency (or lack of transparency) means. Is there a concern about influence? Bribery? Funding of criminal or terrorist organizations? The U.S. aid organizations are kind of in the middle of the pack, which I suppose is not ideal. However, the U.S. list includes the Department of Defense, which I wouldn’t necessarily expect to be that open given the paticular nature of its mission.

    Other questions that come to mind include:

    • What criteria are used to pick the organizations in this list? Who’s missing?
    • Do other military organizations make the list?
    • How is aid defined?
    • Why are some country’s scores aggregated while others are listed separately by organization?

    Some of these answers can be found in the primary report, which suggests that the goal of aid transparency is to allow for effective policy planning and decision-making. The report states:

    For aid to be more effective it needs to be more predictable, coordinated between donors, managed for results, and aligned to recipient countries’ own plans and systems. To achieve this, the information has to be shared between all parties involved in the delivery of aid in a timely, comprehensive and comparable way. Without this information it is not possible to know what is being spent where, by whom and with what results.

    This makes sense … but I don’t know if I would normally associate this goal with “transparency.” To me, transparency has more to do with promoting accountability and providing information to citizens about what their Government is doing. The aid Index seems to be more about project coordination, efficiency and data governance. (Later on in the report, the text does mention that citizens will want to know where their money is going … more of a traditional goal of transparency.)

    One of the major tools in the push for transparency is the development of a common standard for publishing aid information through the International Aid Transparency Initiative (IATI). The IATI registry has improved the quality and transparency of aid information, particularly for organizations that have either automated their publication or have already begun to address gaps and inconsistencies.

    So, is there a story in the development and adoption of this standard? The report itself suggests that the purpose of the Index is in flux and asks whether a simpler methodology could still achieve the goal of providing effective, efficient and accountable aid information.

    As I thought about this chart, I decided that any overview should show both the total transparency score and some measure of improvement from the previous year (there is both a 2011 and 2012 score). I decided on a scatterplot with the total score on the horizontal axis and the change in score (a ratio or percent) from 2011 to 2012 on the vertical axis. Along the right side I also thought I’d include a regular bar chart sorted by score.

    A static sketch of this first chart:

    I like the way the scatterplot emphasizes both the overall score and the year-over-year improvement. This shows organziations that have made progress toward the ultimate goal of transparency but may not have reached the heights of a group like the World Bank. The bar chart on the right shows standard ranking.

    From this chart, the user should be able to navigate to details for each agency. I’d like to see comparisons of each sub-level (agency, organization, country) as well as the individual survey questions. There’s a pretty interesting chart toward the end of the report that shows the responses to all questions for all agenies as colored dots. It is intriguing and might offert some direction to these detailed charts. Otherwise it may be worth exploring standard charts.